ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Difference between space, subspace, subset, span, and ambient space
    Math/Linear algebra 2019. 10. 10. 10:06

    1. Overview

    2. Description

    2.1 Space

    2.2 Subspace

    • Be closed under addition and scalar multiplication
    • Contain the zero vector

    $\forall \boldsymbol{v},\boldsymbol{w}\in V$; $\forall \lambda ,\alpha \in \mathbb{R}$; $ \lambda\boldsymbol{v} +\alpha\boldsymbol{w} \in V$

    2.3 Subset

    2.3.1 Definition

    2.3.2 How to distinguish subset and subspace

    Step 1: Determine whether the origin is in the set

    Step 2: Try to write down the criteria in terms of scalars and vectors of the form $\alpha v+\beta w$

    2.4 span

    2.4.1 Definition

    Given a vector space V over a field K, the span of a set S of vectors (not necessarily infinite) is defined to be the intersection W of all subspaces of V that contain S. W is referred to as the subspace spanned by S, or by the vectors in S. Conversely, S is called a spanning set of W, and we say that S spans W.

    Alternatively, the span of S may be defined as the set of all finite linear combinations of elements (vectors) of S, which follows from the above definition.

    $$span({\boldsymbol{v}_{1},\cdots ,\boldsymbol{v}_{n}})=\alpha _{1}\boldsymbol{v}_{1}+\cdots +\alpha _{n}\boldsymbol{v}_{n},\: \alpha \in \mathbb{R}$$

    2.4.2 theorems

    Theorem 1: The subspace spanned by a non-empty subset S of a vector space V is the set of all linear combinations of vectors in S.

    This theorem is so well known that at times it is referred to as the definition of span of a set.

    Theorem 2: Every spanning set S of a vector space V must contain at least as many elements as any linearly indenpendent set of vectors from V.

    Theorem 3: Let V be a finite-dimensional vector space. Any set of vectors that spans V can be reduced to a basis for V by discarding vectors if necessary (i.e. if there are linearly dependent vectors in the set). If the axiom of choice holds, this is true without the assumption that V has finite dimension.

    This also indicates that a basis is a minimal spanning set when V is finite-dimensional.

    3. Example

    3.1 Subset

    3.2 Subset 2

    3.3 Subset and subspace

    3.4 Subset

    3.5 More vectors $\neq $ more dimensions

    3.6 Span

    3.6.1 Span $\mathbb{R}^{2}$

    Let $S_{1}=\begin{Bmatrix}
    \begin{pmatrix}
    1\\ 
    1\\ 
    0
    \end{pmatrix},\begin{pmatrix}
    1\\ 
    7\\ 
    0
    \end{pmatrix} & 
    \end{Bmatrix}$, $S_{2}=\begin{Bmatrix}
    \begin{pmatrix}
    1\\ 
    1\\ 
    0
    \end{pmatrix}, & \begin{pmatrix}
    1\\ 
    7\\ 
    0
    \end{pmatrix} & ,\begin{pmatrix}
    -1\\ 
    2\\ 
    1
    \end{pmatrix}
    \end{Bmatrix}$

    $$span(S_{1})=span(S_{2})=\mathbb{R}^{2}$$

    4. References

    https://en.wikipedia.org/wiki/Subset

    https://en.wikipedia.org/wiki/Space_(mathematics)

    https://en.wikipedia.org/wiki/Linear_subspace

    http://sincxpress.com/

    https://en.wikipedia.org/wiki/Ambient_space

    https://en.wikipedia.org/wiki/Linear_span

    'Math > Linear algebra' 카테고리의 다른 글

    Basis  (0) 2019.10.10
    Linear independence  (0) 2019.10.10
    Field  (0) 2019.10.10
    Diagonalizable matrix  (0) 2019.10.09
    Cross-product  (0) 2019.10.09

    댓글

Designed by Tistory.