-
Diagonal and traceMath/Linear algebra 2019. 10. 10. 21:36
1. Description
1.1 Diagonal
\boldsymbol{v}_{i}=A_{i,i},\: \: i=\left \{ 1,2,\cdots ,min(m,n) \right \}
1.2 Trace
The trace of an n × n square matrix A is defined as
tr(\boldsymbol{A})=\sum_{i=1}^{m}A_{i,i}=\sum_{i=1}^{n}a_{ii}=a_{11}+a_{11}+\cdots +a_{nn}
where aii denotes the entry on the ith row as well as ith column of A.
2. Example
2.1 Diagonal
diag\left ( \begin{pmatrix} 1 & -1 & 8\\ -1 & -2 & 4\\ 0 & 3 & 5 \end{pmatrix} \right )=\begin{pmatrix} 1\\ -2\\ 5 \end{pmatrix}
diag\left ( \begin{pmatrix} 1 & -1\\ -1 & -2\\ 0 & 3 \end{pmatrix} \right )=\begin{pmatrix} 1\\ -2 \end{pmatrix}
2.2 Trace
trace\left ( \begin{pmatrix} 1 & -1 & 8\\ -1 & -2 & 4\\ 0 & 3 & 5 \end{pmatrix} \right )=1+(-2)+5=4
3. References
https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Diagonal_matrix
'Math > Linear algebra' 카테고리의 다른 글
Transformation matrix (0) 2019.10.11 Matrix-vector multiplication (0) 2019.10.11 Matrix and Matrix multiplication (0) 2019.10.10 Cartesian coordinate system (0) 2019.10.10 Basis (0) 2019.10.10