-
Matrix and Matrix multiplicationMath/Linear algebra 2019. 10. 10. 16:54
1. Overview
2. Description
2.1 Notation
$$\boldsymbol{A}=\begin{pmatrix}
1 & 6 & 0 \\
7 & 2 & 4 \\
4 & 1 & 1
\end{pmatrix}$$$$a_{1,2}=6$$
2.2 Block matrices
$$\boldsymbol{A}=\begin{pmatrix}
\boldsymbol{D} & \boldsymbol{0} \\
\boldsymbol{1} & \boldsymbol{D}
\end{pmatrix}=\begin{pmatrix}
3 & 0 & 0 & 0\\
0 & 4 & 0 & 0\\
1 & 1 & 3 & 0\\
1 & 1 & 0 & 4
\end{pmatrix}$$$\boldsymbol{D}=\begin{pmatrix}
3 & 0\\
0 & 4
\end{pmatrix}$, $\boldsymbol{0}=\begin{pmatrix}
0 & 0\\
0 & 0
\end{pmatrix}$, $\boldsymbol{1}=\begin{pmatrix}
1 & 1\\
1 & 1
\end{pmatrix}$2.3 Matrix size
2.4 Diagonal and off-diagonal
2.5 Matrix dimensionality
2.6 Matrix hyper-dimensionality
3. Matrix multiplication
4. Symmetric multiplication
Symmetric matrix x Symmetric matirx $\neq $ Symmetric matirx, but special cases below meet that condition:
4. References
'Math > Linear algebra' 카테고리의 다른 글
Matrix-vector multiplication (0) 2019.10.11 Diagonal and trace (0) 2019.10.10 Cartesian coordinate system (0) 2019.10.10 Basis (0) 2019.10.10 Linear independence (0) 2019.10.10