-
Matrix and Matrix multiplicationMath/Linear algebra 2019. 10. 10. 16:54
1. Overview
2. Description
2.1 Notation
\boldsymbol{A}=\begin{pmatrix} 1 & 6 & 0 \\ 7 & 2 & 4 \\ 4 & 1 & 1 \end{pmatrix}
a_{1,2}=6
2.2 Block matrices
\boldsymbol{A}=\begin{pmatrix} \boldsymbol{D} & \boldsymbol{0} \\ \boldsymbol{1} & \boldsymbol{D} \end{pmatrix}=\begin{pmatrix} 3 & 0 & 0 & 0\\ 0 & 4 & 0 & 0\\ 1 & 1 & 3 & 0\\ 1 & 1 & 0 & 4 \end{pmatrix}
\boldsymbol{D}=\begin{pmatrix} 3 & 0\\ 0 & 4 \end{pmatrix}, \boldsymbol{0}=\begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}, \boldsymbol{1}=\begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix}
2.3 Matrix size
2.4 Diagonal and off-diagonal
2.5 Matrix dimensionality
2.6 Matrix hyper-dimensionality
3. Matrix multiplication
4. Symmetric multiplication
Symmetric matrix x Symmetric matirx \neq Symmetric matirx, but special cases below meet that condition:
4. References
'Math > Linear algebra' 카테고리의 다른 글
Matrix-vector multiplication (0) 2019.10.11 Diagonal and trace (0) 2019.10.10 Cartesian coordinate system (0) 2019.10.10 Basis (0) 2019.10.10 Linear independence (0) 2019.10.10