Processing math: 100%

ABOUT ME

For organizing technical knowledge and experience. demyank88@gmail.com

Today
Yesterday
Total
  • Invertible matrix and Pseudo-inverse
    Math/Linear algebra 2019. 10. 8. 15:36

    1. Overview

    AB=BA=In

    2. Description

    2.1 Pre-requirement

    A matrix is invertible if it is

    • Square matrix
    • Full rank
    • Non-zero determinant

    2.2 Properties

    Let A be a square n by n matrix over a field K (for example the field R of real numbers). The following statements are equivalent for any given matrix are either all true or all false:

    • A is invertible, that is, A has an inverse, is nonsingular, or is nondegenerate.
    • A is row-equivalent to the n-by-n identity matrix In.
    • A is column-equivalent to the n-by-n identity matrix In.
    • A has n pivot positions.
    • det A ≠ 0. In general, a square matrix over a commutative ring is invertible if and only if its determinant is a unit in that ring.
    • A has full rank; that is, rank A = n.
    • The equation Ax = 0 has only the trivial solution x = 0.
    • The kernel of A is trivial, that is, it contains only the null vector as an element, ker(A) = {0}.
    • Null A = {0}.
    • The equation Ax = b has exactly one solution for each b in Kn.
    • The columns of A are linearly independent.
    • The columns of A span Kn.
    • Col A = Kn.
    • The columns of A form a basis of Kn.
    • The linear transformation mapping x to Ax is a bijection from Kn to Kn.
    • There is an n-by-n matrix B such that AB = In = BA.
    • The transpose AT is an invertible matrix (hence rows of A are linearly independent, span Kn, and form a basis of Kn.
    • The number 0 is not an eigenvalue of A.
    • The matrix A can be expressed as a finite product of elementary matrices.
    • The matrix A has a left inverse (that is, there exists a B such that BA = I) or a right inverse (that is, there exists a C such that AC = I), in which case both left and right inverses exist and B = C = A1.
    • (A1)1 = A;
    • (kA)1 = k1A1 for nonzero scalar k;
    • (Ax)+=x+A1 where + denotes the Moore-Penrose inverse and x is a vector;
    • (AT)1=(A1)T;
    • For any invertible n-by-n matrices A and B, (AB)1=B1A1. More generally, if A1,,Ak are invertible n-by-n matrices, then (A1A2Ak1Ak)1=A1kA1k1A12A11
    • detA1=(detA)1

    2.3 Calculate Inverse Matrix

    2.3.1 Example

    2.3 Proof of uniqueness

    3. Pseudo-inverse

    3.1 Properties

    • Unlike the true inverses where AA1=A1A=I, with the pseudoinverse: AAAAI
    • Can compress a rank-deficient matrix down to a size where it has a true inverse(e.g., via PCA), then the project back to the full space
    • The Moore-Penrose pseudoinverse is unique, but there are other pseudoinverses

    4. Example

    4.1 Invertible example

    The matrix A is invertible. To check this, one can compute that detA=12, which is non-zero

    4.2 Non-invertible Example(Singular)

    The determinant of B is 0, which is a necessary and sufficient condition for a matrix to be non-invertible

    5. References

    https://en.wikipedia.org/wiki/Invertible_matrix

    'Math > Linear algebra' 카테고리의 다른 글

    Field  (0) 2019.10.10
    Diagonalizable matrix  (0) 2019.10.09
    Cross-product  (0) 2019.10.09
    Dot product  (0) 2019.10.09
    Gauss Elimination and Gauss-Jordan Elimination  (0) 2019.10.07

    댓글

Designed by Tistory.