ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • Invertible matrix and Pseudo-inverse
    Math/Linear algebra 2019. 10. 8. 15:36

    1. Overview

    $$AB=BA=I_{n}$$

    2. Description

    2.1 Pre-requirement

    A matrix is invertible if it is

    • Square matrix
    • Full rank
    • Non-zero determinant

    2.2 Properties

    Let $A$ be a square n by n matrix over a field $K$ (for example the field $R$ of real numbers). The following statements are equivalent for any given matrix are either all true or all false:

    • A is invertible, that is, A has an inverse, is nonsingular, or is nondegenerate.
    • A is row-equivalent to the n-by-n identity matrix $I_{n}$.
    • A is column-equivalent to the n-by-n identity matrix $I_{n}$.
    • A has n pivot positions.
    • det A ≠ 0. In general, a square matrix over a commutative ring is invertible if and only if its determinant is a unit in that ring.
    • A has full rank; that is, rank A = n.
    • The equation Ax = 0 has only the trivial solution x = 0.
    • The kernel of A is trivial, that is, it contains only the null vector as an element, ker(A) = {0}.
    • Null A = {0}.
    • The equation Ax = b has exactly one solution for each b in $K_{n}$.
    • The columns of A are linearly independent.
    • The columns of A span $K_{n}$.
    • Col A = $K_{n}$.
    • The columns of A form a basis of $K_{n}$.
    • The linear transformation mapping x to Ax is a bijection from Kn to Kn.
    • There is an n-by-n matrix B such that AB = $I_{n}$ = BA.
    • The transpose $A^{T}$ is an invertible matrix (hence rows of A are linearly independent, span $K^{n}$, and form a basis of $K^{n}$.
    • The number 0 is not an eigenvalue of A.
    • The matrix A can be expressed as a finite product of elementary matrices.
    • The matrix A has a left inverse (that is, there exists a B such that BA = I) or a right inverse (that is, there exists a C such that AC = I), in which case both left and right inverses exist and B = C = $A^{-1}$.
    • ($A^{-1})^{-1}$ = $A$;
    • $(kA)^{-1}$ = $k^{-1}A^{-1}$ for nonzero scalar k;
    • $(Ax)^{+}=x^{+}A^{-1}$ where + denotes the Moore-Penrose inverse and x is a vector;
    • $(A^{T})^{-1}=(A^{-1})^{T}$;
    • For any invertible n-by-n matrices A and B, $(AB)^{-1}=B^{-1}A^{-1}$. More generally, if $A_{1},\cdots , A_{k}$ are invertible n-by-n matrices, then $(A_{1}A_{2}\cdots A_{k-1}A_{k})^{-1}=A_{k}^{-1}A_{k-1}^{-1}\cdots A_{2}^{-1}A_{1}^{-1}$
    • $det\:  A^{-1}=(det\:  A)^{-1}$

    2.3 Calculate Inverse Matrix

    2.3.1 Example

    2.3 Proof of uniqueness

    3. Pseudo-inverse

    3.1 Properties

    • Unlike the true inverses where $AA^{-1}=A^{-1}A=I$, with the pseudoinverse: $AA^{*}\neq A^{*}\neq AI$
    • Can compress a rank-deficient matrix down to a size where it has a true inverse(e.g., via PCA), then the project back to the full space
    • The Moore-Penrose pseudoinverse is unique, but there are other pseudoinverses

    4. Example

    4.1 Invertible example

    The matrix $A$ is invertible. To check this, one can compute that $det\: A=-\frac{1}{2}$, which is non-zero

    4.2 Non-invertible Example(Singular)

    The determinant of $B$ is 0, which is a necessary and sufficient condition for a matrix to be non-invertible

    5. References

    https://en.wikipedia.org/wiki/Invertible_matrix

    'Math > Linear algebra' 카테고리의 다른 글

    Field  (0) 2019.10.10
    Diagonalizable matrix  (0) 2019.10.09
    Cross-product  (0) 2019.10.09
    Dot product  (0) 2019.10.09
    Gauss Elimination and Gauss-Jordan Elimination  (0) 2019.10.07

    댓글

Designed by Tistory.